详细信息
分类信息:
>>学科导航分类法 _理学 _物理学
封面图片 自有资源  
无权查看内容文件信息  
题名 氧化锰电极的纳米结构设计、制备及其储锂性能研究
姓名 李秀万
院系 物理科学与技术学院
专业 凝聚态物理
学位名称 理学博士
外文题名 Design and preparation of nano-structured manganese oxide electrodes for lithium storage application
第一导师姓名 贺德衍
关键词 锂离子电池;负极材料;氧化锰材料;纳米结构设计;水热合成
外文关键词 Lithium ion battery;anode;manganese oxide;micro- and nano-structure;hydrothermal synthesis
学科 理学
摘要 锂离子电池由于具有放电电压高、能量密度大、循环寿命长等特点,近年来在消费电子、电动汽车以及新能源储能领域备受研究者的青睐,并已成为目前最为重要的二次电池。为了研发出具有更高倍率、更大功率放电的下一代锂离子电池,新型电极材料的开发、形貌与结构的设计等至关重要。目前商用的锂离子电池负极材料主要是石墨,具有充放电电位低、成本低廉等优点,但它的理论容量只有372mAh/g,实际容量更小。而且,由于石墨的密度小,导致其能量密度也较低。这些缺陷极大地限制了石墨电极在下一代锂离子电池上的应用。 自2000年Tarascon等人发表了过渡族金属氧化物具有锂离子电池充放电性能以来,对这一类新型锂离子电池负极材料的研究方兴未艾。在各种过渡族金属氧化物中,氧化锰因为其质量比容量高、无毒、环境友好、是目前已知的充放电电位最低的过渡族金属氧化物等优点而备受关注。本论文主要以氧化锰为主要研究对象,通过材料的纳米结构和形貌设计,电极的结构优化等,制备出具有优异储锂性能的氧化锰电极。
外文摘要 Lithium ion battery (LIB) is the most promising energy storage device in the fields of electric vehicles (EVs) and hybrid electric vehicles (HEVs) for its high voltage, high energy density and long life. In order to develop high-performance LIBs for EVs and HEVs, it is essentially to develop electrodes with high rate capability. Novel nanostructures of metal oxides have attracted much attention as improved anode materials because of their high capacities and possible high rate capability, which were attributed to their large specific surface area and the short electronic and ionic transport length in nanoscale. Among all the transition metal oxide, manganese oxide material (MnO and MnO2) stand out from the crowd. This is not only because of the high capacity (MnO: 755 mAh/g, MnO2: 1230 mAh/g, theoretical), non-toxicity and environmental friendliness, but also because of the lower charge-discharge potential, which is known to be the lowest charge and discharge potential in transition metal oxide materials. This paper mainly focuses on preparing manganese oxide electrode with superior lithium storage properties by specific and novel morphology and electrode structure.
研究领域 新能源材料和器件
保存本页    打印本页