详细信息
分类信息:
>>学科导航分类法 _理学 _数学
封面图片 自有资源  
无权查看内容文件信息  
题名 非柱形区域上的非自治反应扩散方程解的长时间行为研究
姓名 肖艳萍
院系 数学与统计学院
专业 基础数学
学位名称 理学博士
外文题名 The long-time behaviors of solutions for non-autonomous reaction-diffusion equations on non-cylindrical domains
第一导师姓名 孙春友
关键词 非柱形区域;反应扩散方程;弱解;变分解;拉回 ~$\mathscr{D}$-吸引子;高阶可积性;连续性
外文关键词 Non-cylindrical domains;Reaction-diffusion equation;Weak solution;Variational solution;Pullback $\mathscr{D}$-attractor;Higher-order integrability;Continuity
学科 理学
摘要 本文主要研究如下定义在非柱形区域上的非自治反应扩散方程解的长时间行为.我们的主要工作是建立新的方法(框架)和先验估计, 对非线性项及外力项不增加任何额外假设, 特别地, 对外力项不做任何光滑性假设, 证明已知的 ~$(L^2,L^2)$ 型拉回~$\mathscr{D}$-吸 引子事实上可以按 ~$L^{2+\delta}$ ($\forall~\delta\in [0,\infty)$) 范数吸引相同的 集族 ~$\mathscr{D}$, 并进一步证明其 ~$H_0^1$ 拉回~$\mathscr{D}$-吸引性. 需要指出的是即使对定义在柱形区域上的非自治系统来说, 当 ~$f\in L^2_{loc}(\mathbb{R};$ $L^2(\x))$ 时, 目前已知最好的结果是~$(L^2,L^p)$ (这里 ~$p$ 满足 ~$\eqref{g1}$) 拉回 ~$\mathscr{D}$-吸引性, 对于 ~$s>0$, 关于 ~$(L^2,L^{p+s})$ 拉回吸引的相关结论还未见到; 而当 ~$f\in L^2_{loc}(\mathbb{R};H^{-1}(\x))$ 时, 最好的结果是 ~$(L^2,L^2)$ 拉回 ~$\mathscr{D}$-吸引性, 对于~$(L^2,L^{q})$$(q>2)$ 拉回 ~$\mathscr{D}$-吸引是否成立仍是开问题. 我们建立在变区域上的定理 \ref{main11} 和定理 \ref{main} 不但解决了上述问题, 而且也解决了变区域系统上类似的开问题. 另一方面, 关于解对初值按 ~$H^1$ 范数的连续性, 就柱形区域上的非自治系统而言没有任何相关结论. 本文对任意空间维数 ~$N$ 和非线性项的任意增长阶 ~$p\geqslant 2$, 给出了变区域上解在~$H^1$ 空间中关于初值的连续依赖性定理 \ref{continuity}, 该定理解决了包含柱形区域非自治系统在内存在的相应的开问题. 同时, 我们给出的抽象结论和先验估计, 对其它耗散型方程解的长时间行为研究也有一定的借鉴作用.
外文摘要 In this dissertation, we consider the long-time behaviors of solutions for the following reaction-diffusion equation defined on non-cylindrical domains. The main works of this paper are to establish new methods (framework) and a priori estimates to prove, without any additional assumptions, especially, no any smoothness assumptions on the forcing term, that the known $(L^2,L^2)$ pullback $\mathscr{D}$-attractor indeed can attract the same class $\mathscr{D}$ in $L^{2+\delta}$-norm ($\delta\in [0,\infty)$ is arbitrary) and $H^1$-norm. We point out that even for the cylindrical domains case, up to now, the best known results about the attraction associated to the corresponding non-autonomous system above is $(L^2,L^p)$ (the power $p$ comes from ~$\eqref{g1}$) pullback $\mathscr{D}$-attraction for $f\in L^2_{loc}(\mathbb{R};L^2(\x))$, and there is no any result about ~$(L^2,L^{p+s})$ pullback ~$\mathscr{D}$-attraction for $s>0$; as $f\in L^2_{loc}(\mathbb{R};H^{-1}(\x))$, the best attraction is $(L^2,L^2)$ pullback $\mathscr{D}$-attraction, and the $(L^2,L^{q})$ pullback attraction remains open for any $q>2$. Our main results ($Theorems$ \ref{main11} and \ref{main}) established for non-cylindrical domains case solve (even for the non-autonomous system defined on cylindrical domains) the problems mentioned above. On the other hand, for non-autonomous system defined on cylindrical domains, there is no any result about the continuity of solutions w.r.t. initial data in $H^1$. Here, for any space dimension and any $p\in [2,\infty)$, we obtain the continuity of solutions w.r.t. initial data in $H^1$, see $Theorem$ \ref{continuity}, which makes up the gap even for cylindrical domains case. Moreover, we emphasize that our method, results and proof scheme are applicable to other dissipative equations.
研究领域 无穷维动力系统
保存本页    打印本页